If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+18a+20=0
a = 1; b = 18; c = +20;
Δ = b2-4ac
Δ = 182-4·1·20
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{61}}{2*1}=\frac{-18-2\sqrt{61}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{61}}{2*1}=\frac{-18+2\sqrt{61}}{2} $
| a^2-18a+20=0 | | 5x-16=-30 | | 0.1=10ˆx | | 2a+2a+2a=30 | | (2x+10)+(4x-10)=360 | | 18.25d=136.5+8.5d | | 136.50m=8.50m+18.25 | | x2+4x+8x+142=0 | | 32=82-d | | x-3/4=4+x/5 | | (x+21/3)•1/7=9/14x-1/6 | | (3-x)/x=15/26 | | 3x5-10=-5 | | x^2-10x+10E(-30)=0 | | x^2-10x+10E-30)=0 | | x^{3}-x=13800 | | 5/6x+16=4/9x+9 | | 2a+2a+5=17 | | x/1000=0,375/62.5 | | x^2-10x+10^(-30)=0 | | 6√3x^2-47x+5√3=0 | | 2,7+3y=9(y-2,1) | | 4y2+7y=0 | | 0,3(x-2)=0,2(x+10) | | 3(2x-1)=3(6-5x) | | X+1=3r-5 | | x+4=2(4x-5) | | 7(1-y)=-(3y-2) | | 2y-7-3(3y+8)-4y+9=0 | | 5(4x+1)-1=2(5x+9)+5x | | (2x+3)+(2x+3)=90 | | -8(3x+2)=-13-22x |